
J Glob Optim (2009) 44:79–97
DOI 10.1007/s10898-008-9308-8

The optimal statistical median of a convex set of arrays

Stefano Benati · Romeo Rizzi

Received: 26 July 2007 / Accepted: 12 April 2008 / Published online: 6 May 2008
© Springer Science+Business Media, LLC. 2008

Abstract We consider the following problem. A set r1, r2, . . . , r K ∈RT of vectors is
given. We want to find the convex combination z =∑

λ j r j such that the statistical median
of z is maximum. In the application that we have in mind, r j , j = 1, . . . , K are the historical
return arrays of asset j and λ j , j = 1, . . . , K are the portfolio weights. Maximizing the
median on a convex set of arrays is a continuous non-differentiable, non-concave optimi-
zation problem and it can be shown that the problem belongs to the APX-hard difficulty
class. As a consequence, we are sure that no polynomial time algorithm can ever solve the
model, unless P=NP. We propose an implicit enumeration algorithm, in which bounds on
the objective function are calculated using continuous geometric properties of the median.
Computational results are reported.

Keywords Global optimization · Median optimization · Statistical median and quantile
optimization · Robust statistics · Branch&bound algorithms

1 Introduction

We consider the following problem. A set r1, r2, . . . , r K ∈ RT of vectors is given. We want
to find the convex combination z = ∑K

j=1 λ j r j , such that the median of z is maximum. In

the application that we have in mind, r j , j = 1, . . . , K are the historical return arrays of
asset j and the decision variable λ j , j = 1, . . . , K are the weight of asset j in the portfolio
with maximum median.
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The problem is motivated from the Markovitz optimal portfolio model. In the standard
approach, the decision maker selects the assets in such a way that the portfolio expectation is
maximized, under the constraint that risk—e.g. variance—must be kept under a fixed thresh-
old. There have been many papers discussing whether risk measures other than variance
should be more appropriate, see for example [2,3,7,9,12,14]. Here we take a different view.
We note that, under some assumptions, the sample mean that appears in the mean/variance
problem can be replaced by other location estimators, for example by the sample median.
If data are slightly not normal, or they are biased by outliers, then it is known from robust
statistic theory that the median is a distribution location estimator more efficient than the
mean, see [13,8]. Therefore introducing the median in portfolio optimization is an interest-
ing matter, but, given the difficulty of finding the optimal median, in this paper we will limit
our interest to the simple unconstrained case, that is risk constraints are not included to the
model.

The optimal median model is also connected to more general quantile optimization [4,7].
The median is a distribution α-quantile, where α = 0.5. Letting α range from 0 to 1, all distri-
bution quantiles can be obtained. In financial application, when α is low, e.g. 0.05 or less, it is
called Value-at-Risk and it has been widely used by financial institutions for risk measuring.
In [4] it has been shown how to develop and solve optimal Mean/Value-at-Risk portfolio
model. It has been shown that commercial softwares as CPlex cannot solve problems with
values of α larger than 0.1; the value of 0.5 corresponding to the median is the most difficult
optimization problem that we experimented in our previous research. The computational
techniques that are developed in this paper can be easily extended to quantile optimization
models and to VaR optimization.

The paper is structured as follows. Section 2 contains the problem statement. It is shown
that it is a case of non-concave optimization, where the objective function has many non-
differentiable local optima, and that the problem can be formulated as a mixed integer non-
linear programming model. In this model, there are two groups of variables: the first group
contains the original continuous variables, e.g. portfolio weights, while binary variables corre-
spond to hyperplanes, that are to be selected to determine a local problem optimum. Therefore
the model has a hybrid nature, being intrinsically both continuous and combinatorial. The
problem solution method will combine these properties.

In Sect. 3, we give a formal proof of the problem difficulty and it is shown that the prob-
lem is APX-hard. It means that the problem is difficult even in the approximate version, that
is when one is satisfied with a solution within a fixed approximation to the optimal
solution. More formally, there exists a ε > 0 such that no poly-time algorithm can produce
a solution of quality at least the optimum times (1− ε) unless P = NP. As a consequence,
only branch &bound or other complete enumeration algorithms can find the best solution.

In Sect. 4, we will state some lemmas to determine the upper bounds to the objective
function. The first lemma uses a geometric property of the continuous median function
to limit the feasible range of continuous variables. This property will be combined with
valid inequalities, that can be deduced from the combinatorial structure of the problem.
Then we will show how this approach can determine some upper bounds to the optimal
median.

In Sect. 5, we describe the exact method, e.g. the branch&bound algorithm, that uses all
bounds discussed previously. The computational results on some test problems are reported:
the number of array K does not pose a serious computational burden, but, if the dimension T ,
that corresponds to the number of binary variables, is greater than some 40, then computation
times can be >1 h.
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2 Quantile optimization and the optimal median problem

Let r be a real T -dimensional vector, so that r ∈ RT . Let ri be entry i of vector r . Rank r in
increasing order and obtain:

r1:T ≤ r2:T ≤ · · · ≤ rT :T
so that ri :T is the value on position i over T . For example:

r1:T = min{ri : i = 1, . . . , T };

rT :T = max{ri : i = 1, . . . , T }.
Let α = 1

T , 2
T , . . . , T−1

T , let q(α) = α T :

Definition 1 The α-quantile of vector r is the element in the q(α)-position: rq(α):T .

The terminology comes from order statistics theory, since rq(α):T is a quantile estimator,
called the q(α)-order statistics.

The most important quantile estimator is the median.

Definition 2 Let T be odd, then the median of r , denoted by med{r}, is r T+1
2 :T .

A set of vectors U = {r j ∈ RT : j = 1, . . . , K } is given. Let ri j be entry i of vector j . We
want to find the convex combination z of the vectors of U , maximizing the q(α)-order statistic
of z. The Order Statistic Optimization Problem can be formulated as follows (problem P1).

max
λ,z

zq(α):T (1)

s.t.

zi =
K∑

j=1

λ j ri j for i = 1, . . . , T (2)

K∑

j=1

λ j = 1 (3)

λ j ≥ 0 for j = 1, . . . , K (4)

where zi is entry i of vector z.
If i = T+1

2 , then we obtain the Optimal Median Problem:

max
λ,z

med{z} (5)

s.t.

zi =
K∑

j=1

λ j ri j for i = 1, . . . , T (6)

K∑

j=1

λ j = 1 (7)
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Fig. 1 The draw of the median of the convex combination of two arrays r1 and r2 (T = 5). Note that for
λ1 = 0, then r2

3:5 = med{r2}

λ j ≥ 0 for j = 1, . . . , K (8)

Remark 1 The Order Statistics Optimization problem is a case of continuous, non-
differentiable and non-convex optimization.

Consider the Optimal Median Problem where K = 2 and T = 5. Then the median depends
on only one variable λ1. The draw of med{λ1r1 + (1− λ1)r2} is reported in Fig. 1.

Problem P1 can be reformulated as a non-linear mixed integer programming model. Let
r Min = min{ri j : i = 1, . . . , T ; j = 1, . . . , K }. The problem, later on referred to as problem
P2, is:

max
λ,y,zMed

zMed (9)

s.t.

K∑

j=1

λ j ri j ≥ r Min + (zMed − r Min)yi for every i = 1, . . . , T (10)

T∑

i=1

yi ≥ T + 1

2
(11)
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K∑

j=1

λ j = 1 (12)

yi ∈ {0, 1} for every i = 1, . . . , T (13)

λ j ≥ 0 for every j = 1, . . . , K . (14)

Problem variables are:

• λ j , j = 1, . . . , K are the original continuous convex weights;

• zMed is the continuous variable representing the median;

• yi , i = 1, . . . , T are binary variables representing the inequalities that define zMed .

Let zi = ∑K
j = 1 λ j ri j . To define zMed , observe that at least T+1

2 values of zi must be

greater or equal to zMed . To accomplish this, we introduced binary variables yi , i = 1, . . . , T
that count how many times the feasible region is defined through an inequality of the type zi ≥
zMed . If yi = 0, then the constraint (10) is always satisfied, but if yi = 1, then

∑K
j = 1 λ j ri j ≥

zMed . The number of those constraints must be at least T+1
2 and, since we are maximizing

zMed , they do not exceed this number. Therefore, if (λ∗, zMed∗ , y∗) is the optimal solution to
P2, then zMed∗ is the median of zi = 1, . . . , T : zMed∗ =med{∑K

j = 1 λ∗j ri j }. This shows that
P1 and P2 are equivalent formulations of the Optimal Median Problem.

Considering quantile optimization problems, problem P2 can be easily modified to deal
with general q(α). For example, when α is low, e.g. 0.05, and dealing with financial data, then
we are dealing with Value-at-Risk optimization, [4,7]. However, computational experiments
contained in [4] show that the median is the most difficult quantile optimization problem to
solve. Therefore it will be the only quantile problem that we will consider.

3 Inapproximability results

In this section, we show that Problem P2 is APX-hard. This negative result holds even if we
restrict our attention to instances in which r Min = 0, and every entry ri, j is either 0 or 1.

We refer to the Minimum Node Cover Problem restricted to graphs with maximum
degree � ≤ 3 as to the MNC3 Problem. The MNC3 Problem is known [11,1,6] to be APX-
hard. This means that there exists an ε > 0 such that no (1 + ε)-approximation algorithm
exists for MNC3 unless P = NP. We show the same holds for Problem P2 by means of a
Turing L-reduction from MNC3 to Problem P2. (Clearly, since Problem P2 is a maximization
problem, we have to show that there exists an ε > 0 such that no (1 − ε)-approximation
algorithm exists for Problem P2 unless P=NP.)

Assume given an instance of MNC3, that is, a graph G = (V, E) with �(G) ≤ 3. We
are asked to find a minimum cardinality node cover of G, that is, an X ⊆ V with |X | as
small as possible and such that every edge of G has at least one endnode in X . We show
that, assuming the existence of a (1 − ε)-approximation algorithm for Problem P2 for any
0 < ε ≤ 1

2 , then, for every natural k such that G admits a node cover of size k we can produce
in poly-time a node cover of G of size at most (1+ 6ε)k. Running this for all possible values
of k = 1, 2, . . . , |V |, we obtain that the existence of a (1− ε)-approximation algorithm for
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Problem P2 implies the existence of a (1+ 6ε)-approximation algorithm for MNC3, hence
the APX-hardness of Problem P2 follows from the APX-hardness of MNC3.

The reduction Given the graph G = (V, E) comprising the input instance of MNC3, and
a natural k ≤ |V |, we build up an associated instance of Problem P2 as follows. Assume
V = {v1, v2, . . . , vn} and E = {e1, e2, . . . , em}. We can always assume k ≥ n/2 by the
following well known theorem of Nemhauser and Trotter.

Theorem 1 (Nemhauser and Trotter [10]) Given a graph G = (V, E), introduce a new node
v′ for every node v ∈ V . Let V ′ = {v′ : v ∈ V } and F = {uv′ : uv ∈ E}. Consider the
bipartite graph H = (V, V ′; F) on 2|V | node and 2|E | edges. Let X be a minimum node
cover of H. Let Y = {v : v ∈ X .and. v′ ∈ X} and Z = {v : v ∈ X .xor. v′ ∈ X}. Then
the following three properties hold:

(i) if a set D ⊆ Z covers G[Z ] then D ∪ Y covers G;

(ii) there exists a minimum cover of G which contains Y ;

(iii) every node cover of G[Z ] contains at least |Z |/2 nodes.

Therefore, since a minimum node cover in a bipartite graph can be found in poly-time,
then we can assume k ≥ n

2 .
We take K := n and T := 2m + 4k − 1. Intuitively, the K columns R1, R2, . . . , RK of

matrix (ri, j ) correspond to the n nodes v1, v2, . . . , vn of G. Moreover, in our intentions, the
first m rows R1, R2, . . . , Rm of matrix (ri, j ) correspond to the m edges e1, e2, . . . , em of G.
Indeed, for i = 1, 2, . . . , m, (and for every j = 1, 2, . . . , n,) we set ri, j = 1 if v j ∈ ei and
ri, j = 0 otherwise. In practice, the first m rows of matrix (ri, j ) give the incidence matrix of
G. The next 2n rows of matrix (ri, j ) come into pairs, with each such a pair associated with
a different node of G. More precisely, for i = 1, 2, . . . , n, (and for every j = 1, 2, . . . , n,)
we set rm+2i, j = rm+2i−1, j = 1 if i = j and rm+2i, j = rm+2i−1, j = 0 otherwise. The
remaining T −m − 2n := m − 1+ 4k − 2n rows are taken to be all 0. Then, by definition,
r Min = 0. Right now it suffices to observe that m − 1+ 4k − 2n ≥ 0 follows from k ≥ n/2,
hence it is possible to perform all the actions prescribed by our reduction.

The reduction is complete: we have by now fully specified an instance of Problem P2 on
the basis of the pair 〈G, k〉. Clearly, all the actions prescribed in the above reduction can be
performed in polynomial time.

Example 1 Consider the following graph G = (V, E), in which V = {1, 2, 3, 4, 5} and
E = {(1, 2), (1, 3), (2, 3), (2, 5), (3, 4), (4, 5)}; n = 5, m = 6 and we want to know whether
G admits a node cover of cardinality k = 3.

The constraints of the form (10) are the following.
The first m= 6 are the rows describing the arcs of G: the corresponding “node-arc” subm-

atrix is:

M =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 0 0 0
1 0 1 0 0
0 1 1 0 0
0 1 0 0 1
0 0 1 1 0
0 0 0 1 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

;
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then there is the “double-identity” submatrix:

N2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

;

and the “zero” submatrix:

O =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

The constraint matrix is:

R =
⎡

⎣
M
N2

O

⎤

⎦

If yk = 1 for some row index k, then one of the following types of constraint is active:
λi + λ j ≥ zMed for some (i, j) ∈ E ; λi ≥ zMed for some i .

The following two lemmas introduce our theorem on the complexity of the median
problem.

Lemma 2 The instance of Problem P2 associated to a graph G = (V, E) with �(G) ≤ 3
and an integer k ≥ n/2 by means of the reduction described above admits a feasible solution
of value 1

k whenever G admits a node cover of size k.

Proof Let X ⊆ V be a node cover of G with |X | = k. Consider the following choice for
the decision variables of the associated instance of Problem P2: take λ j = 1

k if v j ∈ X and
λ j = 0 if v j /∈ X and take zMed = 1

k . Furthermore, for all i ≤ m, take yi = 1, whereas, for
all i > m + 2n, take yi = 0. Finally, for every j = 1, 2, . . . , n, take ym+2 j = ym+2 j−1 = 1
if v j ∈ X , and ym+2 j = ym+2 j−1 = 0 otherwise.

Notice that all constraints of type (10) are satisfied. Indeed, if i > m+2n, then constraints
(10) are satisfied since yi = 0. Moreover, for every j = 1, 2, . . . , n, the constraints (10) with
i =m + 2 j and i =m + 2 j − 1 are satisfied since either yi = 0 or v j ∈ X and hence λ j = 1

k .
In the second case remember also that ri, j = 1. Finally, all constraints of type (10) with i ≤ m
are satisfied with yi = 1, since X is a node cover and the first m rows of matrix (ri, j ) form
the incidence matrix of G. Notice that the number of variables yi set to 1 is m + 2k= T+1

2 .
This implies that

∑
yi = T+1

2 . and that constraint (11) is also satisfied. 
�
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Example 1 (continue) Observe that X = {2, 3, 5} is a node cover of cardinality k = 3. The
corresponding solution is: λi = 1

3 , i = 2, 3, 5, λi = 0, i = 1, 4; y j = 1, j = 1, . . . , 6; j =
9, . . . , 12; j = 15, 16, y j = 0 for all other j ; zMed = 1

3 .

Lemma 3 Assume ε≤ 1
2 . Assume given a feasible solution (λ, y, zMed)with zMed ≥ (1−ε) 1

k
for the instance of Problem P2 associated to G = (V, E) and k as better specified above.
Then we can produce a node cover of G of size at most (1+ 6ε)k in poly-time.

Proof Let λ1, λ2, . . . , λK , zMed , and y1, y2, . . . , yT be a feasible solution with zMed ≥
(1− ε) 1

k . We assume the value of no variable λ j and zMed can be decreased without making
the solution infeasible. It implies zMed = (1−ε) 1

k and that max{λ j | j = 1, . . . , n} = (1−ε) 1
k ,

since if λ j > (1 − ε) 1
k for some j , then also λ j + λw > (1 − ε) 1

k for all j, w such that
( j, w) ∈ E , so that λ j can be decreased while keeping values yk fixed. Furthermore, we
can always assume that either λ j = (1 − ε) 1

k or λ j = 0 occurs for every j = 1, 2, . . . , K .
Indeed, let V ∗ = {v j ∈ V : 0 < λ j < (1 − ε) 1

k } and consider a node va ∈ V ∗. By the
above assumption on the minimality of the λ j ’s in the feasible solution, there must exist an
edge vavb ∈ E such that λa + λb = (1− ε) 1

k . Notice that vb also belongs to V ∗. We hence
propose to modify the given feasible solution by setting λa = (1− ε) 1

k , λb = 0. To keep the
solution feasible we may be forced to set y f = yg = 0 for the (at most) two edges e f and eg

of E incident with vb and other than vavb, but now we can also set yn+2a = yn+2a−1 = 1
hence maintaining the validity of constraint (11).

Let V+ = {v j ∈ V : λ j = (1− ε) 1
k }. Notice that, by constraint (12),

|V+| ≤ k

1− ε
= k

1+ 2ε

1+ ε − 2ε2 ≤ k(1+ 2ε) ,

where the last inequality holds insofar 1+ε−2ε2 ≥ 1, and hence holds since ε≤ 1
2 . By con-

straint (11), we know that the number of yi ’s set to 1 is at least m+2k and all have i ≤m+2n
since for i > m+2n row Ri is all 0. Since |V+|≤ k(1+2ε), then at least m+2k−2k(1+2ε)

of the yi ’s set to 1 have i ≤m. This means that |V+| covers at least m − 4kε edges of G.
Therefore, by just picking one node from each one of the edges left uncovered by V+ and
adding it to V+, we obtain a node cover of G of size at most |V+| + 4kε≤ k(1+ 6ε). 
�
Theorem 4 The Maximum Median Problem is APX-hard.

Proof If we know the solution to the Maximum Median Problem, then we know the solution
to problem P2. But if we know how to solve P2, then, from the previous lemmas, we know if
a graph admits an Approximate Node Cover. It follows that the Maximum Median Problem
is APX-hard. 
�

4 Problem upper bounds

From the problem formulation and the complexity result, the only exact method to solve the
problem is implicit complete enumeration. In the following, we will implement a
branch & bound scheme, in which the tree is pruned if the upper bound of a node is smaller
than the best found feasible solution. The upper bounds are calculated using the continuous
properties of the median function and with the help of valid inequalities that can be added to
the problem.
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4.1 Bounds on portfolio variables

The first step is to show how to restrict continuous variables feasible range. From (12) and
(14), there is an implicit upper bound λ j ≤ 1, for every j . These bounds can be decreased
using the following lemmas.

The following facts are straightforward:

Lemma 5 Let r ∈ RT , λ ∈ R+; let λ = [λi = λ; i = 1, . . . , T ] then

• med{λr} = λmed{r};
• max{λr} = λmax{r};
• med{r + λ} = med{r} + λ.

Lemma 6 Let r1, r2 ∈ RT , then med{r1 + r2} ≤ med{r1} +max{r2}.
Proof Let λ = max{r2} and then λ = [λ, . . . , λ]. Then med{r1 + r2} ≤ med{r1 + λ} =
med{r1} + λ = med{r1} + max{r2}. 
�

Combining the above lemmas, we obtain the following inequality:

Lemma 7 Let r1, r2 ∈ RT , let λ ∈ [0, 1], then med{λr1 + (1− λ)r2} ≤ λmed{r1} + (1−
λ)max{r2}.
Proof med{λr1+(1−λ)r2} ≤ med{λr1}+max{(1−λ)r2} ≤ λmed{r1}+(1−λ) max{r2}.


�
We can extend the last lemma to the case of K vectors:

Lemma 8 Let r1, . . . , r K ∈ RT , λ1, . . . , λK ∈ R+ ∪ {0}, such that
∑K

j=1 λ j = 1, then:

med

⎧
⎨

⎩

K∑

j=1

λ j r
j

⎫
⎬

⎭
≤ λqmed{rq} +

∑

j �=q

λ j max{r j }. (15)

Suppose that a heuristic feasible median zh is calculated. For example zh = max j

{med{r j }}. The following theorem show how to decrease the bounds on λ j variables.

Theorem 9 Suppose that for some j , we have zh ≥ med{r j }. Then:

λ j ≤ max{max{r i } : i �= j} − zh

max{max{r i } : i �= j} − med{r j } .

Proof The rule comes from the valid inequality (15):

zh ≤ med{r j }λ j +
∑

i �= j

max{r i }λi .

Then,

zh ≤ med{r j }λ j +max{max{r i } : i �= j}(1− λ j )

from which the lemma follows. 
�
We can see that if zh = med{r j }, then the lemma provides λ j ≤ 1. That is, we obtain the

same bound on variable λ j as the one in the problem formulation. But if zh > med{r j }, a
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condition usually met in practice, then the inequality implies λ j < 1. In the following, we
will refer to:

b j = max{max{r i } : i �= j} − zh

max{max{r i } : i �= j} −med{r j }
as the new upper bound on λ j .

A simple corollary shows how some continuous variables can be fixed to 0:

Corollary 10 Suppose that for some q we have zh > max{rq}, then λ∗q = 0 in any optimal
solution.

Proof Assume the contrary and let λ∗j , j = 1, . . . , K be the optimal value, such that λ∗q > 0.

Consider the solution λ′j =
λ∗j

1−λ∗q
for j �= q , λ′q = 0.

Notice now that for any t such that
∑K

j=1 λ∗j rt j ≥ r Med∗ we have:

K∑

j=1

λ′j rt j =
K∑

j=1; j �=q

λ∗j
1− λ∗q

rt j = 1

1− λ∗q

K∑

j=1; j �=q

λ∗j rt j

≥ r Med∗ − λ∗q max{rq}
1− λ∗q

> r Med∗ 1− λ∗q
1− λ∗q

,

contradicting the optimality of r Med∗ . 
�
4.2 Bound from surrogate constraints

Now we combine the new bounds on continuous variables with valid inequalities that are
deduced from the mixed integer formulation. Basically, the bound states that the median
cannot be greater than the mean of the best half of the highest numbers. For every column
r j , with j = 1, 2, . . . , K , let σ j : {1, 2, . . . , T } 
→ {1, 2, . . . , T } be any permutation in S|T |
such that rσ j (1), j ≥ rσ j (2), j ≥ . . . ≥ rσ j (T ), j and let β j :=∑ T+1

2
i=1 rσ j (i), j denote the sum of

the T+1
2 biggest entries in column r j . We obtain the following valid inequality:

Lemma 11 zMed ≤ 2
T+1

(∑K
j=1 β jλ j

)
.

Proof Relabel the index of the inequalities so that the optimal y∗i selects inequalities
1, . . . , T+1

2 of the form:

K∑

j=1

λ j ri j ≥ zMed for i = 1, . . . , T+1
2 . (16)

Summing all inequalities we obtain the valid inequality:

T+1
2∑

i=1

K∑

j=1

λ j ri j ≥ T + 1

2
zMed . (17)
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Notice that β j ≥∑ T+1
2

i=1 ri j for every j . Therefore,

2

T + 1

K∑

j=1

β jλ j ≥ 2

T + 1

K∑

j=1

λ j

⎛

⎜
⎝

T+1
2∑

i=1

ri j

⎞

⎟
⎠

= 2

T + 1

T+1
2∑

i=1

K∑

j=1

λ j ri j ≥ zMed .


�
From the previous lemma, we can calculate the following bound. Let b j ∈ R be the upper

bound of continuous variable λ j , for example as calculated from Theorem 9 and Corollary
10. Let zMed∗ be the optimal median value, then

Theorem 12 zMed∗ ≤ max
{

2
T+1

(∑K
j=1 β jλ j

)
| ∑K

j=1 λ j = 1; 0 ≤ λ j ≤ b j ∀ j
}

.

Note that the bound can be calculated in a greedy fashion. First compute β j for every j ,
then calculate β j1 = max{β j | j = 1, . . . , K }, then λ j1 = b j1 . The next step is to calculate
β j2 = max{β j | j = 1, . . . , K ; j �= j1} and λ j2 = min{b j2 , 1− b j1}, and so on till we reach
∑K

j=1 λ j = 1.

4.3 Bound from dominating inequalities

Now we combine the bounds b j for all j with a simplified problem version. We replace every
convex combination with a constant term, so we are left with a problem with only integer
variables that can be solved in a greedy fashion.

Let qi = max
{∑K

j=1 ri jλ j | ∑K
j=1 λ j = 1; 0 ≤ λ j ≤ b j ∀ j

}
. Note that qi can be calcu-

lated with the same procedure of theorem 12. Then:

Lemma 13 If an optimal solution is such that zMed∗≤∑K
j=1 ri jλ j for some i, then zMed∗≤qi .

Now we can use inequalities zMed ≤ qi to obtain an approximation of problem P2.

Theorem 14 Consider the following problem:

zd = max zMed (18)

qi ≥ r Min + (zMed − r Min)yi for every i (19)

T∑

i=1

yi = T + 1

2
(20)

yi ∈ {0, 1} (21)

then zMed∗ ≤ zd .

Note that zd can be calculated easily: set qi , i = 1, . . . , T in decreasing order and take
zd = q T+1

2 ,T .
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5 Branch&bound algorithm

To solve the problem, we propose a branch&bound algorithm that enumerates implicitly all
binary solutions yi , i = 1, . . . , T . At every tree node, the partial solution is composed of
variable sets T 1 = {i |yi = 1} and T 0 = {i |yi = 0}. Let zMed(T 0, T 1) be the node best
median value, when yi are constrained according to set T 0 and T 1.

5.1 Adding valid inequalities

First, we note that the formulation of P2 can be strengthened adding valid inequalities that
are redundant to define the optimal solution, but that are useful to evaluate a node of the
branch&bound tree. Let r Max = max{ri j |i = 1, . . . , T ; j = 1, . . . , K }, those inequalities
are of the form:

K∑

j=1

λ j ri j ≤ r Max + (zMed − r Max )(1− yi ) for every i = 1, . . . , T . (22)

The equations reduce to
∑K

j=1 λ j ri j ≤ zMed if yi = 0, and
∑K

j=1 λ j ri j ≤ r Max if yi = 1.
Consider the following problem:

zl(T 0, T 1) = max
λ,y,zl

zl (23)

s.t.

K∑

j=1

λ j ri j ≥ zl for every i ∈ T 1 (24)

K∑

j=1

λ j ri j ≤ zl for every i ∈ T 0 (25)

K∑

j=1

λ j ≤ 1 (26)

λ j ≥ 0 for every j = 1, . . . , K . (27)

Note that it is a node relaxation of problem P2. Variables yi such that i ∈ {T 1 ∪ T 0} fix
inequalities (24) and (25). Conversely, free yi variables and their corresponding inequalities
are cancelled. Clearly, zl(T 0, T 1) is an upper bound to zMed(T 0, T 1) in node (T 0, T 1) and
it can be calculated using linear programming. If zh ≥ zl(T 0, T 1), then the node can be
pruned.

5.2 Node upper bounds

The result of theorem 12 can be extended to the analysis of branch&bound nodes. Let s j =∑
i∈T 1 ri j , for j = 1, . . . , K . Let c j , j = 1, . . . , K , be the sum of the greatest T+1

2 − |T 1|
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elements ri j of column j , such that i /∈ (T 0 ∪ T 1). Let β j (T 1, T 0) = s j + c j and be:

zc(T 0, T 1) = max

⎧
⎨

⎩

2

T + 1

⎛

⎝
K∑

j=1

β j (T
0, T 1)λ j

⎞

⎠ | 0 ≤ λ j ≤ b j ∀ j

⎫
⎬

⎭
. (28)

Then zc(T 0, T 1) is an upper bound of zMed(T 0, T 1).
The problem stated in theorem 14 can be reformulated to compute another upper bound

of node (T 0, T 1). The problem is:

zd(T 0, T 1) = max zMed (29)

qi ≥ r Min + (zMed − r Min)yi for every i (30)

T∑

i=1

yi = T + 1

2
(31)

yi = 1 i f i ∈ T 1; (32)

yi = 0 i f i ∈ T 0; (33)

yi ∈ {0, 1} i f i ∈ T − (T 1 ∪ T 0). (34)

then zMed(T 0, T 1) ≤ zd(T 0, T 1).
Therefore, in every node of the branch&bound tree, three upper bounds can be calculated.

In our computational experience, the strongest bound is zl , if many variables are constrained,
and zc, if the problem is less constrained and we are at a low level of the branch&bound tree.
But in some cases we observed that also zd can be the best bound, therefore all three bounds
are useful to prune the tree.

5.3 Inequality variables fixing

Fixing binary variables to 0 or 1 are strategies that can reduce the computational time. There-
fore at every node the following rules are implemented.

If we know an upper bound zu(T 0, T 1) to the optimal value zMed(T 0, T 1), then the binary
variables can be fixed to 0 or 1, if the following condition occurs.

Rule 1 Suppose that for some i /∈ {T 0, T 1}, r Min
i = min{ri jλ j |∑K

j=1 λ j = 1; 0 ≤ λ j ≤
b j } ≥ zu , then yi = 1 in any optimal solution for zMed(T 0, T 1).

In the root node, that is when T 0 and T 1 are empty, the rule follows from
∑K

j=1 ri jλ j ≥
min{ri j : j = 1, . . . , K } ≥ zu ≥ zMed∗ .

Suppose we know an heuristic feasible solution zh , then:
Rule 2 Suppose that for some i /∈ {T 0, T 1}, r Max

i = max{ri jλ j |∑K
j=1 λ j = 1; 0 ≤ λ j ≤

b j } ≤ zh , then yi = 0 in any optimal solution.
The rule follows from

∑K
j=1 ri jλ j ≤ zh ≤ zMed∗ .
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5.4 Branch&bound scheme

The main subroutine of the branch&bound code that has been implemented is the following
recursive subroutine. The main input of the subroutine are sets T 1 and T 0, that are the yi

variables fixed to 0 or to 1, and zh , that is the best median found. At the beginning zh is
calculated using the heuristic algorithm described in [5], then it is updated if some terminal
node is a better solution. At the end of the algorithm, zh is optimal.

Recursive Subroutine Evaluate-Node(T 1, T 0)

Terminal Node: If {T 1, T 0} = T Then
Call Compute zMed

If zMed > zh Then
Call Update Best Solution
End If
Return

End If

Examine the partial solution:
Call Compute zU

(Comment: zU is the upper bound corresponding to {T 1, T 0})

Pruning the node:
If zU ≤ zh Then

Return
End If

Variable fixing:
Call Fix Inequalities

(Comment: According to zU and zh , fix as many yi variables
as possible)

Branch:
Call Select Variable To Branch
( Comment: Select i ∈ T − (T 1 ∪ T 0) and branch the tree)
Let T 1

l ← T 1 ∪ {i}; T 0
l ← T 0

Call Evaluate-Node(T 1
l , T 0

l )
Let T 1

r ← T 1; T 0
r ← T 0 ∪ {i}

Call Evaluate-Node(T 1
r , T 0

r );
Return

End Subroutine

In “Terminal Node”, a terminal node is reached, the corresponding value zMed is calcu-
lated using problem P2, that does not contain free integer variables anymore and is a standard
linear problem. In “Examine the partial solution”, all bounds that we described are calculated
and the least is retained, to prune the tree, in “Pruning the node”. In “Variable fixing”, the
procedure helps to reduce the size of the tree. In “Branch”, branching is done by fixing to 0
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or 1 the variable yq that most likely is equal to 1 in the optimal solution. More formally, let
bi = max{ri j : j = 1, . . . , K } for i ∈ T − |T 1 − T 0|; then q is branched if bq = maxi bi .

5.5 Computational results

The algorithm has been coded in CompaQ Visual Fortran, using Minos 5.5 Linear Solver.
Then it has been tested on two problem classes:

• Random problems: all data are generated by (0,1) uniform random numbers.
• Stock exchange problems: all data are daily closing prices of assets of the Milan stock

exchange (year 2005).

Tests were run on a Pentium III 850 Mhz PC.
Table 1 reports our findings. Let T be the number of the integer variables and we let T

vary from 15 to 45. Let K be the number of the continuous variables and we let vary 5 to 50.
Then we explore how computational times increase. Consider random problems: the most
difficult are solved in less that 1 s for T=15, in <20 s for T=25, in <14 min for T=35, but
in almost 4 h for T=45.

Consider stock exchange problems: the most difficult were solved in <1 s if T=15, in
<44 s for T=25, in <81 min for T=35, but the most difficult problems of 45 data were not
solved after 8 h of computations, so that the computation has been halted.

Therefore we expect that, if T is <40, the optimal median problem should be solved in
an acceptable computational time. But if T is larger than 40, the problem can be untractable.
In a related paper, [5], a fast heuristic is implemented. In Table 1, column labelled “Opt H?”
is reported whether the heuristic found the optimal solution and can be seen that at least for
half problems the heuristic is effective. The heuristic computation times always much <1 s,
therefore it is a viable alternative method for calculating the best median. More results are
contained in [5].

Moreover, we see that random problems are easier than stock exchange problems. If we
compare computational times of problems with the same dimension, we see that times are
almost always bigger, in some cases 10 times bigger. We were a bit surprised, since we
imagined that stock exchange data should have had a natural order that helped the algorithm,
for example fixing yi variables to 0 and 1. But it was not the case. One possible explanation
of this difficulty is the solution structure of the problem. In Table 2, for any test problem, we
report the value of max{λi |i = 1, . . . , K } of the optimal solution. As can be seen, the values
are different from random to real data. Random problems show a maximum λ that is very
high, such as 0.8, suggesting that the optimal solution is close to the vertices of λ convex
bounds. For Stock Exchange problems the converse is true. Maximum λ is around to 0.35,
suggesting that the optimal solution is somewhere “in the middle” of the λ convex bounds.

Another explanation of the difficulty of real data problems is the effectiveness of the
heuristic procedure. If we exclude problems with T=45, we discovered that the heuristic
algorithm found the exact solution 12 times over 15 for random problems, but only 6 times
over 15 for stock exchange problems. Therefore a point of future research is to improve that
heuristic.

In Table 1, we see that also the dimension K affects the computational times. By and large,
when K=50 the number of nodes are 4 times the nodes for K= 5. One possible reason is
that, if the dimension is higher, then there are more local optima that are close to the best
one, and the branch&bound tree must explore all of them. In any case, the heuristic solution
is a good approximation and is always obtained in much <1 s.
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Table 1 Computational results

Data type T K Nodes Times Opt H?

Random 15 5 85 0.05 y

10 609 0.33 n

20 101 0.11 y

30 915 0.66 y

50 101 0.16 y

25 5 3988 2.2 n

10 3639 2.25 y

20 3417 2.69 y

30 8519 7.14 y

50 17981 19.33 y

35 5 6205 3.73 n

10 43587 29.77 y

20 775285 840.58 y

30 81489 92.88 y

50 264875 403.71 y

45 5 13005 8.52 n

10 2173151 2336.7 n

20 6211469 12727.23 n

30 317755 489.06 y

50 1933559 5450.81 y

Stock exchange 15 5 491 0.49 y

10 313 0.28 n

20 737 0.49 y

30 887 0.61 n

50 695 0.66 y

25 5 4405 2.48 y

10 5701 3.51 n

20 20927 16.81 y

30 15423 15.54 y

50 36427 44.16 n

35 5 20317 12.14 n

10 244059 177.41 n

20 713315 745.12 n

30 1378295 2045.76 n

50 2381505 4866.23 n

45 5 176199 127.37 y

10 3750001 3960.18 y

Note: “Nodes” are the nodes of the branch&bound tree. Times are expressed in seconds, “Opt H” says whether
the first heuristic solution is optimal
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Table 2 The maximum value of
λ for different test problems

Data type K T=15 T=25 T=35

Random 5 0.84 0.7 0.7

10 0.69 0.81 0.76

20 0.95 0.94 0.5

30 0.79 0.78 0.8

50 0.69 0.76 0.86

Stock exchange 5 0.7 0.57 0.43

10 0.34 0.35 0.29

20 0.38 0.38 0.27

30 0.36 0.31 0.29

50 0.24 0.43 0.25

As far as financial applications are concerned, we discovered that optimal median portfolio
are well diversified. For those problems, λ values are interpreted as portfolio weights. In Ta-
ble 3, some data about optimal λ are reported for problem type “Stock exchange”. Those data
are:

• l1: the greatest portfolio weight.
• l2: the second greatest portfolio weight.
• lmin : the smallest portfolio weight.
• n.asset : the number of assets that are included in the portfolio.

It can be seen that l1 is almost always at a value of 0.35, that is, only one third of wealth is
invested in the most important asset; l2 is always an important investment, since it is always
around 0.2 and in some cases, even lmin is not negligible. Moreover, the number of asset
that are selected by the optimal median model are almost always 5 or 6. Those findings are
strikingly different to the solution of the Optimal Mean Problem, that is finding the convex
combination of arrays such that the sample mean is maximum: the solution would be trivially
λ j = 1.0 if r j is the vector with maximum mean.

But when we started this research, we were moved by the hypothesis that the sample
median could replace the sample mean in the Markovitz mean-variance portfolio optimiza-
tion. After our tests, we see that the optimal median portfolio is completely different to the
optimal expectation portfolio, and that, using the median, portfolio diversification can be
obtained without using any risk constraint. Of course, those results must be extended to the
case that a robust variance estimator is introduced to the model, so that the two models can be
better compared. However, we have the impressions that it is a promising direction of research.

6 Future research

In this article, we introduced and discussed the optimal median problem, motivated by the fact
that, under some assumptions, the sample median is a distribution location estimator that can
be used as an alternative to the sample mean. From a mathematical point of view, we showed
that the model is rich enough to find an interesting connection with binary optimization and
we developed a branch&bound algorithm to find the optimal solution. But, from a financial
point of view, the model is very simple, since it does not contain any risk measure. Therefore,
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Table 3 Portfolio weights and number of assetts of optimal solutions to Stock Exchange problems

T K l1 l2 lmin n.assett

15 5 0.7 0.17 0.13 3

10 0.34 0.24 0.11 5

20 0.38 0.26 0.03 5

30 0.36 0.24 0.01 6

50 0.24 0.18 0.11 6

25 5 0.57 0.43 0.43 2

10 0.35 0.3 0.12 4

20 0.38 0.23 0.02 7

30 0.31 0.24 0.05 6

50 0.43 0.31 0.01 5

35 5 0.43 0.4 0.01 5

10 0.29 0.23 0.01 6

20 0.27 0.21 0.03 6

30 0.29 0.17 0.03 7

50 0.25 0.24 0.01 12

45 5 0.81 0.17 0.02 3

10 0.72 0.15 0.02 5

Note: l1 is the maximum portfolio weight, l2 the second biggest, lmin the minimum weight; n.assett is the
number of non-zero optimal variables

the model should be extended to include risk modelling constraints. It means that the next
research step must be to develop bounds and algorithms for an optimal median model with
side constraints. Of course, the results that are obtained in this simplified case will be useful.
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